Harmonic Space and Quaternionic Manifolds
نویسندگان
چکیده
منابع مشابه
Harmonic space and quaternionic manifolds
We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...
متن کاملHarmonic Space Construction of the Quaternionic Taub-NUT metric
We present details of the harmonic space construction of a quaternionic extension of the four-dimensional Taub-NUT metric. As the main merit of the harmonic space approach, the metric is obtained in an explicit form following a generic set of rules. It exhibits SU(2) × U(1) isometry group and depends on two parameters, TaubNUT ‘mass’ and the cosmological constant. We consider several limiting c...
متن کاملalmost-quaternionic Hermitian manifolds
In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.
متن کاملFano Manifolds, Contact Structures, and Quaternionic Geometry
Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 1994
ISSN: 0003-4916
DOI: 10.1006/aphy.1994.1025